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By identifying the stratification which leads to maximal buoyancy flux in a stably-
stratified plane Couette flow, we make a prediction of what bulk stratification (as a
function of the shear) is optimal for turbulent mixing. A previous attempt to do this
(Caulfield, Tang & Plasting, J. Fluid Mech., vol. 498, 2004, p. 315) failed due to an
unexpected degeneracy in the variational problem. Here, we overcome this issue by
parameterizing the variational problem implicitly with the overall mixing efficiency
which is then optimized across to return a rigorous upper bound on the buoyancy flux.
We find that the bulk Richardson number quickly approaches 1/6 in the asymptotic
limit of high shear with the associated mixing efficiency tending to 1/3. The predicted
mean profiles associated with the bound appear to have a layered structure, with the
gradient Richardson number being low both in the interior, and in boundary layers
near the walls, with a global maximum, also equal to 1/6, occurring at the edge of
the boundary layers.

1. Introduction
Stratified mixing by small-scale turbulence is a fundamental process in the

atmosphere and ocean, which plays a key role in the overall dynamics and global
budgets of heat and momentum (Wunsch & Ferrari 2004, Ivey, Winters & Koseff
2008). Parameterizations are needed to embed the effects of small-time and length-
scale stratified mixing (typically shear-driven) within larger scale models (Fernando
1991, Peltier & Caulfield 2003). A key concept is the ‘mixing efficiency’ η, which
is the proportion of the work done that leads to irreversible stratified mixing.
Conventionally, η is assumed to be at most 0.2 (Osborn 1980) characteristic
of numerically simulated Kelvin–Helmholtz billows triggering turbulence (Peltier
& Caulfield 2003), although recent experimental evidence from exchange flows
(Prastowo et al. 2008) suggests that smaller efficiencies may occur in less idealized
flows.

It is intuitively appealing, and experimentally verified that η must increase from zero
for small values of overall stratification (see Linden 1979; Fernando 1991 for reviews).
Linden (1979) further argued that there should typically be an overall stratification
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where mixing is most efficient. For higher stratifications, mixing is reduced due to
diminished vertical motions, although recent research suggests that mixing is never
completely suppressed, even when the stratification is very strong, provided the
buoyancy Reynolds number Reb = ε/(νN2) � 1, where N is the buoyancy frequency,
ν is the kinematic viscosity and ε is the turbulent dissipation rate (Billant & Chomaz
2001, Brethouwer et al. 2007). Such non-monotonic variation of mixing efficiency
with overall stratification implies the generic development of ‘layers’ with regions
of relatively well-mixed fluid separated by thin regions of stronger stratification, as
originally proposed by Phillips (1972) and Posmentier (1977).

Finding theoretical evidence for a preferred mixing stratification as a function of
the shear, and hence the generic development of layers is the motivation for this
study. Apart from exhaustive numerical simulations, variational methods arguably
provide the only feasible theoretical approach to take given that mixing flows of
interest are turbulent. The key idea is to embed all the complication associated with
the turbulence into an enlarged set of flow fields which are easier to manipulate
and characterize in the sense of bounding quantities of interest. The philosophy
pursued here is to look for a flow field which maximizes the mixing at fixed shear
but arbitrary stratification subject to a small (to keep things tractable) subset of the
dynamical constraints imposed by the governing equations. The optimizing (shear
dependent) stratification which emerges is then a theoretically grounded predictor for
Linden’s observations (Linden 1979). However, finding a non-trivial (< 1) maximum
value directly for the mixing efficiency is very difficult and a more natural target for
bounding is the closely related buoyancy flux B which enters into the definition of
the mixing efficiency

η :=
B

B + ε
. (1.1)

Earlier work (Caulfield & Kerswell 2001; Caulfield, Tang & Plasting 2004) in
a stratified plane Couette system isolated a bound on B which unfortunately
failed to yield any information about the optimal stratification field (in the form
of the bulk Richardson number J , or indeed the structure of the flow profiles)
due to an unexpected degeneracy. The purpose of this paper is to remove this
degeneracy to reveal the shear-dependent optimizing stratification for the Caulfield
et al. (2004) bound. This is achieved by effectively parameterizing the variational
problem using an a priori unknown variable, the mixing efficiency. In practice,
this means adding an extra constraint to those used in Caulfield et al. (2004)
requiring that the mixing efficiency has the pre-selected value η and then finding a
rigorous upper bound Bη

max (J, Re; η). Optimizing over η removes the implicit nature
of the bound leaving Bmax (J, Re) = maxη Bη

max (J, Re; η) which is now a function
of the two a priori known parameters in the stratified plane Couette problem. A
further maximization over J reveals the optimizer Jmax (Re) and retrieves the bound
Bmax (Jmax (Re), Re) = maxJ Bmax (J, Re) first derived in Caulfield et al. (2004).

The calculations presented here are also interesting from the methodology
perspective in two ways. First, while we are successful in our objective (extracting
the optimizing stratification), the variational machinery is also found to break down
in a way not seen in other applications. For reasons which remain unclear, we are
unable to derive a bound on the buoyancy flux for stratifications stronger than
the optimal value of J for any Re and η. Second, the approach employed here
of deriving a formal inequality result predicated on a ‘conditional’ constraint is a
promising new direction for this variational approach which dates back to initial
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ideas of Malkus (1954, 1956) and formulation by Howard (1963) and Busse (1969,
1970). Our conditional constraint builds on previous work by Krommes & Smith
(1987) who considered time-dependent conditional constraints for generating bounds
on advective transport in turbulent fluids and plasmas, and by Kerswell (2000) who
examined the consequences of a ‘smoothness’ or minimum length scale constraint on
an energy dissipation rate bound in shear turbulence.

2. Mathematical formulation
We follow Caulfield et al. (2004) by considering stratified plane Couette flow

in which a layer of fluid is sheared by two infinite parallel plates at z = ± 1/2d ,
moving with velocities ∓ 1/2�U x̂ respectively. There is a constant stable density
difference across the layer of �ρ, which is sufficiently small to allow the Boussinesq
approximation to be invoked. For simplicity, we assume that the Prandtl number
(the ratio of the kinematic viscosity to the thermal diffusivity) σ = ν/κ = 1. The plate
separation d , a characteristic density ρ0 (where �ρ/ρ0 � 1) and the diffusion time scale
d2/κ = d2/ν (since σ = 1) are used to non-dimensionalize the governing equations:

∂u
∂t

+ u · ∇u + ∇p − ∇2u + Re2Jρ ẑ = 0,
∂ρ

∂t
+ u · ∇ρ − ∇2ρ = 0, ∇ · u = 0, (2.1a)

u
(
x, y, ± 1

2
, t

)
= ∓ 1

2
Re x̂, ρ

(
x, y, ± 1

2
, t

)
= ∓ 1

2
, Re :=

�Ud

ν
, J :=

g�ρd

ρ0(�U )2
, (2.1b)

where ρ is the (non-dimensional) difference in the density from ρ0 scaled by �ρ,
u = (u1, u2, u3), Re is the Reynolds number, J is the (bulk) Richardson number and
g is the acceleration due to gravity. We define volume averaging 〈 〉 and horizontal-
and-long-time averaging ( ) of a quantity q as

〈q(x, t)〉 :=

∫ 1/2

−1/2

q(z) dz :=

∫ 1/2

−1/2

(
lim

Lx,Ly,T → ∞

1

4LxLyT

∫ T

0

∫ Lx

−Lx

∫ Ly

−Ly

q(x, t) dy dx dt

)
dz .

(2.2)

Two important quantities characterizing the turbulent motion are the long-time-
averaged buoyancy flux B, and the mechanical energy dissipation rate ε associated
with the mixing in the entire flow

B := Re2J 〈ρu3〉 = Re2J (〈|∇ρ|2〉 − 1), ε := 〈||∇u||2〉 − Re2, (2.3)

where Re2 is the dissipation rate of the (non-mixing) laminar shear −Rezx̂ realized
at low Re. The energy available for mixing, Re〈u1u3〉 = B + ε, feeds into these two
sinks with the mixing efficiency η (defined in (1.1)) indicating the exact split over the
entirety of the flow. The (overall) mixing efficiency η is thus a vertical average of the
flux Richardson number Rif (z), which in this flow is expressed as

Rif (z) =
Re2Jρu3

Reu1u3

, η = 〈Rif 〉, (2.4)

typically dependent on z (and J and Re) in turbulent stratified shear flows (see, e.g.
Armenio & Sarkar 2002).

The approach adopted here is to find the maximum value of the buoyancy flux for a
velocity field which only satisfies a small set of dynamical constraints derived directly
from the governing equations together with an additional condition that the mixing
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efficiency attains a particular value. This is pursued by setting up the Lagrangian
functional

L := Re2J (〈|∇ρ|2〉 − 1) + a[Re〈u1u3〉 − Re2J 〈ρu3〉 − 〈||∇u||2〉 + Re2]

+ ab[1 − 〈|∇ρ|2〉 + 〈ρu3〉]Re2J − 〈aφ′(u1u3 − ū′ − 〈u1u3〉 − Re)〉
− 〈abRe2Jτ ′(ρu3 − ρ̄ ′ − 〈ρu3〉 − 1)〉 + 〈ap̂∇ · u〉
− ac[η(||∇u||2 − Re2) − (1 − η)Re2J (〈|∇ρ|2〉 − 1)], (2.5)

where (.)′ = d/dz(.). The Lagrange multipliers a, ab, −aφ′(z), −abRe2Jτ ′(z) and ap̂(x)
impose the total kinetic energy balance, entropy flux balance, mean streamwise
momentum balance (at fixed z), mean heat balance (at fixed z) and pointwise
incompressibility respectively, and −ac imposes the new mixing efficiency condition
(a, b and c are scalars). For convenience, the Lagrange multiplier imposing entropy
flux balance ab corresponds to the Lagrange multiplier b in Caulfield et al.
(2004).

To make progress, we use a trick due to Hopf (1941) and developed by Doering &
Constantin (1992, 1994, 1996) by adopting a non-unique decomposition of the velocity
and density fields based upon the Lagrange multiplier fields φ(z) and τ (z),

u(x, t) = φ(z)x̂ + v(x, t), ρ(x, t) = τ (z) + θ(x, t). (2.6)

The non-uniqueness stems from the fact that the ‘fluctuation’ fields v and θ are
permitted to have a mean, i.e. v �= 0 and θ �= 0 in general, yet must satisfy homogeneous
boundary conditions, while the ‘background’ fields φ(z) and τ (z) are supposed to
satisfy the (inhomogeneous) boundary conditions so that

φ = ∓ 1
2
Re, τ = ∓ 1

2
, v = 0, θ = 0 at z = ± 1

2
. (2.7)

Substituting in this decomposition, variations with respect to v1 and θ require

v1 = − (1 + 2cη)

2(1 + cη)
(φ + Rez), θ =

(2[1 + ac(1 − η)] − ab))

2(ab − [1 + ac(1 − η)])
(τ + z), (2.8)

so that the background fields can be related to the mean fields,

u1 =
(φ + Rez)

2(1 + cη)
− Rez, ρ =

ab(τ + z)

2(ab − [1 + ac(1 − η)])
− z. (2.9)

With v̂ : = v − v1x̂ and θ̂ : = θ − θ now ‘meanless’,

L =
a〈(φ′ + Re)2〉

4(1 + cη)
+ (ab − [1 + ac(1 − η)])Re2J 〈(ρ ′ + 1)2〉 − H, (2.10a)

with

H := a (1 + cη) 〈‖∇v̂‖2〉 + a〈v̂ · ∇p̂〉 + a〈φ′v̂1v̂3〉
+ Re2J ([ab − (1 + ac[1 − η])]〈|∇θ̂ |2〉 + a〈v̂3θ̂〉 + ab〈τ ′v̂3θ̂〉). (2.10b)

The crux of the analysis is to recognize that if all the Lagrange multipliers can be
chosen such that H � 0 for all incompressible fields v̂ and θ̂ , then an upper bound
exists for L (Doering & Constantin 1992, 1994, 1996). Minimally, a > 0, c > −1/η and
ab > 1 + ac(1 − η), otherwise H can reach −∞ for fields of vanishing length scales.
The condition H � 0 for all allowable v̂ and θ̂ amounts to a spectral constraint
on a linear operator (Doering & Constantin 1992, 1994, 1996) derived from H and
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parameterized by φ and τ . To find the lowest (best) bound on L, all the other
Euler–Lagrange equations:

1
2
λ(φ′ + Re)(1 − η) = v̂1v̂3 − 〈v̂1v̂3〉, (2.11a)

2∇2v̂ − λφ′(1 − η)

⎛
⎝ v̂3

0
v̂1

⎞
⎠ − (b − 1)(1 − η)λRe2Jρ ′θ̂ ẑ − 1 + cη = 0, (2.11b)

∇ · v̂ = 0, ab = 2(1 + ac[1 − η]) − a, (b − 1)(∇2θ̂ − ρ ′v̂3) = 0, (2.11c)

ρ ′ + 1 + 〈v̂3θ̂〉 − v̂3θ̂ = 0, ηRe〈v̂1v̂3〉 − Re2J 〈v̂3θ̂〉 = 0, (2.11d)

where

λ :=
1

(1 − η)(1 + ηc)
= 2 − 〈‖∇v̂〉‖2〉

(1 − η)Re〈v̂1v̂3〉
1 + (b − 1)(1 − η)Re2J 〈|∇θ̂ |2〉/〈‖∇v̂‖2〉
1 + 1

2
(b − 1)ReJ 〈|∇θ̂ |2〉/〈v̂1v̂3〉

(2.12)

must be solved as well as simultaneously ensuring that the spectral constraint is
satisfied.

The numerical solution strategy, as discussed in Plasting & Kerswell (2003) and
Caulfield et al. (2004), crucially begins from where the laminar state u = −Rezx̂; v = 0;
ρ = − z; θ = 0, loses energy stability. This occurs when the energy of an arbitrary
perturbation ũ(x, t), ρ̃(x, t) of the laminar solution (albeit with zero horizontal mean,
homogeneous boundary conditions and mixing efficiency η) is not ensured to decay,
or

d

dt

〈
1
2
ũ2

〉
= Re〈ũ1ũ3〉 − 1

(1 − η)
〈‖∇ũ‖2〉 > 0. (2.13)

The mixing efficiency condition delays the loss of energy stability to Re = 82.65/(1−η)
compared to the unconstrained result of 82.65 (Joseph 1976) or, from a different
perspective, means that there is the constraint 0 � η � 1 − 82.65/Re for mixing to
occur.

The spectral constraint (H � 0 in (2.10b)) for the laminar solution (φ = −Rez,
τ = −z) requires a > 0, and[

1 +

(
1 − 1

a

)
η

(1 − η)

]
〈‖∇v̂‖2〉 − Re〈v̂1v̂3〉 � 0. (2.14)

Marginality of this can be identified with marginality of the energy stability criterion,
in the limit where a → ∞, and so b → 2c(1−η)−1 using (2.9) and (2.11). The threshold
energy stable solution (ũ, ρ̃) is then the non-trivial solution (v̂, θ̂ ) that marginally
satisfies the laminar spectral constraint. This new solution branch is then followed
to higher Re until a second fluctuation field becomes marginal with respect to the
spectral constraint. At this point, a new solution branch is traced including the
contribution of this fluctuation field until a third becomes marginal and so on (see
Plasting & Kerswell 2003 for a detailed description).

The degeneracy encountered in Caulfield et al. (2004) arose at the initial energy
stability bifurcation. For the un-η-coupled problem considered in Caulfield et al.
(2004), c = 0 in the spectral constraint and η = 0 in the energy stability problem
(2.13). The equivalence between these criteria then corresponds to a = b = 1. (The
simplification (2.14) is not available as the Euler–Lagrange equation for c, the latter
in (2.11d), is no longer applicable.) This choice leads to a decoupling of the density
and velocity fields and the degeneracy experienced in Caulfield et al. (2004) – an
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Figure 1. Contours of Bη
max (J,Re; η)/B∞ as J and η is varied for an asymptotically large

value Re = 20000. The thick solid line marks the envelope of J η
max (Re; η), while the circle

marks Jmax (Re) � J∞ = 1/6 which corresponds to ηmax (Re) � η∞ = 1/3.

indeterminate relationship between ρ ′v̂3 and ∇2θ̂ in the last equation in (2.11c).
Crucially with η imposed, this degeneracy only occurs as b → 1, i.e. as J approaches
(from below) the value J η

max (Re, η) associated with the maximum buoyancy flux for
fixed η and Re. As a result, we are able now to determine the optimizing solution in
its entirety by ‘unfolding’ this limit.

3. Results
In principle, a bound Bη

max (J, Re; η) on the buoyancy flux can be derived over
all J , Re and η � 1 − 82.65/Re. In practice, we find that the variational machinery
breaks down for J >J η

max (Re, η), its optimizing value for given Re and η. This failure

manifests itself by the changing of sign of the coefficient ab−(1 + ac[1−η]) of 〈|∇θ̂ |2〉 in
the definition of H. This destroys the possibility of the spectral constraint ever holding
and implies that the character of the stationary point sought changes from a global
maximum to a saddle. Such a pathology has not been reported before in the literature
and quite why it happens here is a mystery. We do know, however, that the result
from Caulfield et al. (2004) is uniformly valid over J and therefore that the bound
Bη

max (Jmax (Re, η), Re; η) holds over J >J η
max (Re, η).

It is straightforward to establish that Bη
max (J, Re; η) increases monotonically with

Re, is maximized with respect to variations in η when c = 0, and with respect to
variations in J when b = 1. Figure 1 illustrates the character of our results at a
representative large Re = 20000. The parabolic line indicates J = J η

max (Re, η) and
only for smaller J values (at fixed η) – the coloured region – does the variational
analysis yield a bound. (This parabola is actually chopped for η � 1 − 82.65/Re, but
this is not visible since Re is so large.) Exactly along this line, at J = Jmax (Re) :=
J η

max (Re, ηmax (Re)) and η = ηmax (Re), the bound is largest (at a given Re) which
corresponds to the Caulfield et al. (2004) result. Now, crucially, this point is precisely
located in the (J, η) plane, and Jmax (Re) is revealed.

All along this J = J η
max (Re, η) line, there is a connection to the bounding solution

outlined in Plasting & Kerswell (2003) for energy dissipation in the unstratified
Couette flow problem. The Euler–Lagrange equations (2.12), (2.11a) and (2.11b),
combined with the incompressibility condition reduce to (2.13a)–(2.13d ) of Plasting
& Kerswell (2003), under the transformation

Re(1 − η) = RePK , φ(1 − η) = φPK , λ(Re) = λPK (RePK ), (3.1)
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Figure 2. (a) Jmax (Re) versus Re (plotted with a black line) J η
max (Re, 1/9); (red line)

J η
max (Re, 1/5); (green line) J η

max (Re, 1/3); (blue line) J η
max (Re, 1/2); (cyan line) J η

max (Re, 2/3)
(magenta line). (b) Variation with Re of: Bmax (Jmax ,Re)/B∞; (plotted with a black line), and
Bη

max (J η
max ,Re; η)/B∞ for η = 1/9; (red line) η = 1/5; (green line) η = 1/3; (blue line) η = 1/2;

(cyan line) η =2/3; (magenta line). Note that increasing η increases Re at which energy stability
is lost.

where the subscript PK refers to the equivalent quantities defined in Plasting &
Kerswell (2003) (hereafter, λPK is understood to be calculated at RePK for clarity).
Therefore, as in the special case of Caulfield et al. (2004), the fields φ and v̂ associated
with generating a bound on the long-time averaged buoyancy flux in the more
general problem of stratified Couette flow with imposed mixing efficiency can be
identified with the fields associated with generating a bound on the dissipation rate
in unstratified Couette flow, with appropriate rescaling of Re. Now, however, we can
further see that consistency between (2.11d) and (2.11a), (2.11c) and (2.11b) requires
that the density fields are slaved to the velocity fields,

ρ ′(Re) =
φ′

PK (RePK )

RePK

, θ̂ (Re) =
2v̂1(RePK )

λPK RePK

, J η
max (Re, η) = 1

2
η(1 − η)λPK . (3.2)

Optimizing over η (equivalent to setting c to 0 in (2.12)) requires

ηmax (Re) =
λPK − 1

λPK

& Jmax (Re) = 1
2
ηmax . (3.3)

Although the approach of λPK to its asymptotic value of 3/2 is non-smooth (see
figure 2a), λ is within 1 % of this value for RePK > 1300. Hence ηmax (Re) ≈ 1/3 and
Jmax (Re) ≈ 1/3 for Re > 1300/(1 − η) ≈ 1950.

With (3.1), the bound on the buoyancy flux can be constructed straightforwardly
from the bound on the dissipation rate calculated in Plasting & Kerswell (2003) as

Bη
max

(
J η

max (Re, η), Re; η
)

=
η

(1 − η)

λ2
PK

4(λPK − 1)
〈(φ′

PK + RePK )2〉,

→ 0.008553Re3η(1 − η)2 as Re → ∞. (3.4)

The asymptotic bound on the buoyancy flux is maximized for η∞ = limRe → ∞
ηmax (Re) = 1/3 which recovers the Caulfield et al. (2004) scaling result Bmax (Jmax (Re),
Re) → 0.0012671Re3 = B∞ as Re → ∞, and is suggestive of the numerical results
of Riley & de Bruyn Kops (2003). Figure 2(b) shows Bmax (Jmax , Re)/B∞ and
Bη

max (J η
max , Re; η)/B∞ for various choices of η as functions of Re. Bmax (Jmax , Re)

is the envelope of all Bη
max (J η

max , Re; η) curves for η � 1/3 where the point of contact
is given by η = ηmax (Re) (curves for η > 1/3 are strictly below the global maximum
bound).
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Figure 3. (a) Variation with z of: u1 (plotted with a solid line); −ρ (dot-dashed line); and
Ri(z) as defined in (3.5) (dashed line) for a flow with Re = 826.5 and J = Jmax (826.5) = 0.1620.
Ri(z) is even, while u1 and ρ are odd about the midplane z = 0 of the flow. The boundary
layer structure is clearly evident, with Ri reaching a maximum Rimax (Re) at the edge of the
boundary layer. (b) Variation with Re, for flows with J = Jmax (Re), of: the maximum value
Rimax (Re) (i.e. at the edge of the boundary layers, plotted with a solid line); Ri(1/2,Re) (i.e.
at the wall, plotted with a dashed line) and Ri(0,Re) (i.e. at the midplane, plotted with a
dot-dashed line). The asymptotic scaling for Ri(1/2,Re) identified in Caulfield et al. (2004) is
plotted with a thin solid line. By comparison with figure 2, Rimax (Re) = Jmax (Re).

The complete optimal mean flow profiles can also now be deduced. In
figure 3(a), we plot profiles of u1 (solid line) and −ρ (dot-dashed line) for a flow
with Re = 826.5 = 10ReES and J = Jmax (826.5) = 0.1620. As discussed in Plasting &
Kerswell (2003) and Caulfield et al. (2004), the mean velocity profile exhibits a
boundary layer structure, and since φ → 0 as z → 0, u1 → − 1/2Rez in the interior of
the flow. Similarly, ρ ′ → 0 for the bounding solution as z → 0 using (3.2), and so the
mean density also exhibits a boundary layer structure with a well-mixed interior, as
postulated in Caulfield et al. (2004).

It is now also possible to calculate the gradient Richardson number Ri(z), the
appropriate measure for the relative intensity of the stratification and the shear.
Expressed in terms of the non-dimensionalization used here,

Ri(z, Re) := −Re2J

(
dρ

dz

)/(
du1

dz

)2

=
−4Jmax (Re)RePK φ′

PK

(φ′
PK − RePK )2

, (3.5)

for the bounding flow at ηmax (Re) and Jmax (Re; ηmax ) using (3.2) and (2.9) and is
plotted with a dashed line in figure 3(a). As discussed in detail in Caulfield et al.
(2004), even though the density gradient is large near the wall, since φ′

PK = O(Re3/2
PK ),

Ri(1/2, Re) → Re2/(9B∞) � 87.69/Re as Re → ∞. In figure 3(b), we plot Ri(1/2, Re)
with a dashed line, and this asymptotic prediction from Caulfield et al. (2004) with
a thin solid line. Similarly, since φ′ → 0 as Re → ∞, the interior of the flow becomes
well mixed, with Ri(0, Re) tending rapidly to very small values as Re → ∞, as shown
in figure 3(b) with a dot-dashed line.

Simple analysis of (3.5) shows that the maximum value of Ri(z, Re) over z,
Rimax (Re) = Jmax (Re), where φ′

PK (z) = RePK , which occurs at the edge of the boundary
layer. The variation of Rimax (Re) with Re is plotted on figure 3(b) with a solid line
which is identical to the solid black line (Jmax (Re)) in figure 2(a). Therefore, as Re
increases, the Richardson number in the interior of the flow (and at the boundaries)
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drops towards zero, while for the bounding solution the maximum value of Ri is
identical to the value of the bulk Richardson number Jmax (Re), and is located at
some distance from the boundaries. This is highly suggestive that the optimal flow
for mixing leads inevitably in its interior to layering as discussed by Linden (1979).

4. Summary
In this paper, an upper limit on the long-time-averaged buoyancy flux within stably

stratified plane Couette flow has been derived using a small subset of kinematic and
dynamical constraints deduced directly from the governing Navier–Stokes equations.
Using a novel trick of further constraining the problem to have a particular mixing
efficiency, we have uncovered the optimal bulk Richardson number Jmax (Re) (and
hence bulk stratification) associated with this maximum as a function of the shear.
The asymptotic value of Jmax (Re) → 1/6 is consistent with the picture put forward
by Linden (1979) that there is an optimal stratification most conducive to mixing,
that this stratification inevitably leads to a layered flow structure, and that at high
Re, mixing efficiency is finite implying that the dissipation and buoyancy flux have
the same scaling. This generic development of layers suggests that caution needs
to be shown in applying concepts from idealized flow models with uniform density
gradients, while an interesting question arises as to how to identify the characteristic
depth of such layers in open flows.

The buoyancy flux bound presented in this paper has been derived as a general
function of the stratification and shear, both a priori known parameters of the
stratified plane Couette flow problem. This two-parameter result is eminently testable
by direct numerical simulations with the key concerns being whether the qualitative
features of the bound mirror the real behaviour (maxima) of the buoyancy flux and
the subsequent relationship with the mixing efficiency. Hopefully this report will
stimulate such simulations which may also reveal additional constraints to incorporate
into the analysis, will show whether the development of layers is indeed generic, and
also will reveal how significant the boundary layers are to the mixing dynamics.
Interestingly, the boundary layers associated with these bounding flows are very
reminiscent of those observed in numerical simulations of other stratified boundary
layers. Both Saiki, Moeng & Sullivan (2000) and Armenio & Sarkar (2002) (who
numerically simulated the stable atmospheric boundary layer and channel flow with
constant temperature walls, respectively) observed naturally developing boundary
layers with low local Ri(z) analogous to the profiles shown in figure 3(a) near z =0.5,
even though the flows have markedly different outer conditions.

Certainly, further constraints derived directly from the governing equations can
only improve the quality of the output bound. In practice, however, this has proved
extremely hard to implement. For example, the original set of constraints used by
Busse (1970) to bound the energy dissipation rate in unstratified plane Couette
flow (and which form the core of what are used here) has been exhausted only
relatively recently (Plasting & Kerswell 2003). Tellingly, Busse’s nearly 40-year-old
asymptotic result is still essentially unbettered (Kerswell & Soward 1996). It may well
be that to improve the optimal stratification prediction made here, rigour needs to
be abandoned in favour of pragmatism with new constraints imposed based upon
observed features suggested by simulation and experiment, perhaps associated with
layer-like characteristics of the horizontally averaged flow or vertical variation of the
flux Richardson number Rif (z) as defined in (2.4). Such constraints would perhaps
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allow the dynamics of the flow’s interior to be isolated from the boundaries, thus
leading to results more broadly applicable to open flows.
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